RF Toolbox™
User's Guide

7

MATLAB

R2022a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

RF Toolbox™ User's Guide
© COPYRIGHT 2004-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

June 2004
August 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 14)
Revised for Version 1.0.1 (Release 14+)
Revised for Version 1.1 (Release 14SP2)
Revised for Version 1.2 (Release 14SP3)
Revised for Version 1.3 (Release 2006a)
Revised for Version 2.0 (Release 2006b)
Revised for Version 2.1 (Release 2007a)
Revised for Version 2.2 (Release 2007b)
Revised for Version 2.3 (Release 2008a)
Revised for Version 2.4 (Release 2008b)
Revised for Version 2.5 (Release 2009a)
Revised for Version 2.6 (Release 2009b)
Revised for Version 2.7 (Release 2010a)
Revised for Version 2.8 (Release 2010b)
Revised for Version 2.8.1 (Release 2011a)
Revised for Version 2.9 (Release 2011b)
Revised for Version 2.10 (Release 2012a)
Revised for Version 2.11 (Release 2012b)
Revised for Version 2.12 (Release 2013a)
Revised for Version 2.13 (Release 2013b)
Revised for Version 2.14 (Release 2014a)
Revised for Version 2.15 (Release 2014b)
Revised for Version 2.16 (Release 2015a)
Revised for Version 2.17 (Release 2015b)
Revised for Version 3.0 (Release 2016a)
Revised for Version 3.1 (Release 2016b)
Revised for Version 3.2 (Release 2017a)
Revised for Version 3.3 (Release 2017b)
Revised for Version 3.4 (Release 2018a)
Revised for Version 3.5 (Release 2018b)
Revised for Version 3.6 (Release 2019a)
Revised for Version 3.7 (Release 2019b)
Revised for Version 3.8 (Release 2020a)
Revised for Version 4.0 (Release 2020b)
Revised for Version 4.1 (Release 2021a)
Revised for Version 4.2 (Release 2021b)
Revised for Version 4.3 (Release 2022a)

Contents

1]

2|

RF Objects

RFDataObjects e 1-2
OVEIVIEW . o ottt e 1-2
Typesof Data 1-2
Available Data Objects 1-2
Data Object Methods 1-3

RF Circuit Objects i 1-4
Overview of RF Circuit Objects 1-4
Components Versus Networks 1-4
Available Components and Networks 1-5
Circuit Object Methods i e 1-6

RF Model Objects i 1-8
Overview of RF Model Objects 1-8
Available Model Objects i 1-8
Model Object Methods 1-8

RF Network Parameter Objects 1-10
Overview of Network Parameter Objects 1-10
Available Network Parameter Objects 1-10
Network Parameter Object Functions 1-10
Model an RF Component

Create RFObjects 2-2
ConstructaNew Object i, 2-2
Copy an Existing Object 2-3
Specify or Import ComponentData 2-4
RF Object Properties i 2-4

Set Property Values 2-4
Import Property Values from Data Files 2-6

Use Data Objects to Specify Circuit Properties 2-8
Retrieve Property Values 2-9
Reference Properties Directly Using Dot Notation 2-11
Specify Operating Conditions 2-12
Available Operating Conditions 2-12

Set Operating Conditions i, 2-12
Display Available Operating Condition Values 2-12

Contents

Process File Data for Analysis 2-14

Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters 2-14
Extract M-Port S-Parameters from N-Port S-Parameters 2-15
Cascade N-Port S-Parametersovvviiiinnnnnnnnnn.. 2-16
Analyze and Plot RF Components 2-19
Analyze Networks in Frequency Domain 2-19
Visualize Component and NetworkData 2-19
Compute and Plot Time-Domain Specifications 2-24
Export Component DatatoFile 2-27
Available Export Formats 2-27
How to Export Object Data i, 2-27
Export ObjectData i e 2-28
Basic Operations with RFObjects 2-29

Export Verilog-A Models

3|

Model RF Objects Using Verilog-A 3-2
OVEIVIEW . o o 3-2
Behavioral Modeling Using Verilog-A 3-2
Supported Verilog-AModels 3-2

Export Verilog-AModel 3-4
Represent Circuit Object with Model Object 3-4
Write Verilog-A Module 3-5

The RF Design and Analysis Tool

4

The RF Design and AnalysisTool 4-2
What is the RF Design and AnalysisApp? ..., 4-2
Open the RF Design and AnalysiSAPDo iiiii i 4-2
The RF Design and Analysis Window 4-2
The RF Design and Analysis App Workflow 4-3

Create and Import Circuits 4-5
Circuits in the RF Design and AnalysiSApp, 4-5
Create RF Components0 0., 4-5
Create RE Networkso s 4-7
Import RF Objects into the RF Design and AnalysisApp 4-11

Modify Component Data 4-14

Analyze Circuits 4-15

Export RFObjects i 4-18

Export Components and Networks 4-18
Export to Workspacecoiiiiiii i 4-18
ExporttoaFile 4-19
Manage Circuitsand Sessions 4-21
Working with Circuits e 4-21
Working with the RF Design and Analysis App Sessions 4-22
Model an RF Network i 4-24
OVEIVIBW . ottt e e e e 4-24
Start the RF Design and AnalysisApp, 4-24
Create the Amplifier Network, 4-24
Populate the Amplifier Network 4-25
Analyze the Amplifier Network 4-28
Export the Network to the Workspace 4-29

AMP File Format

S|

AMP File Data Sections 5-2
OVeIVIBW . .ttt 5-2
Denoting Commentsttt 5-2
Data Sections i 5-3
S, Y, or Z Network Parameters, 5-3
Noise Parameters i 5-4
Noise Figure Data i i 53-3
Power Data e 5-6
IP3 Data ..o e 5-8
Inconsistent Data Sections 5-9

6/

Determining Parameter Formats 6-2
Primary and Secondary Formats 6-2
Determining Formats for One Parameter 6-3
Determining Formats for Multiple Parameters 6-3

RF Toolbox Examples

Superheterodyne Receiver Using RF Budget Analyzer App 7-2

Visualizing RF Budget Analysis over Bandwidth 7-16

viii

Contents

Bandpass Filter Response 7-23

MOS Interconnect and Crosstalk 7-29
Bandpass Filter Response Using RFCKT Objects 7-35
MOS Interconnect and Crosstalk Using RFCKT Objects 7-41
Modeling a High-Speed Backplane (Measured 16-Port S-Parameters to 4-

Port S-Parameters)t e 7-49
Modeling a High-Speed Backplane (4-Port S-Parameters to a Rational

Function) e 7-54
Modeling a High-Speed Backplane (4-Port S-Parameters to Differential

TDRand TDT) e 7-61
Modeling a High-Speed Backplane (Rational Function to a Simulink®

Model) 7-64
Modeling a High-Speed Backplane (Rational Function to a Verilog-A

Module) e 7-68
Using 'NPoles' Parameter With rationalfit 7-72
Using 'Weight' Parameter With rationalfit 7-76
Using 'DelayFactor' Parameter With rationalfit 7-82
Data Analysis on S-Parameters of RFData Files 7-86
Write S2P Touchstone Files 7-93
Visualize Mixer Spurs 7-96
Finding Free IF Bandwidths 7-102
De-Embedding S-Parameters 7-111
Bisect S-Parameters of Cascaded Probes 7-115
Designing Matching Networks for Low Noise Amplifiers 7-120
Designing Matching Networks (Part 2: Single Stub Transmission Lines)

.. 7-130

Design Broadband Matching Networks for Antennas 7-138
Design Broadband Matching Networks for Amplifier 7-147
Impedance Matching of Small Monopole Antenna 7-159
Operations with RF Circuit Objects 7-166

Operations with RF DataObjects 7-172

Design IF Butterworth Bandpass Filter 7-176
Passivity: Test, Visualize, and Enforce Passivity of Rational Fit Output
.. 7-180
Design, Visualize and Explore Inverse Chebyshev filter -1 7-187
Design, Visualize and Explore Inverse Chebyshev Filter -II 7-192
Design Matching Networks for Passive Multiport Network 7-198
Frequency Sweep in RF Budget Analysis 7-207
Using Rational Object to Fit S-Parameters 7-209
Design Two-Stage Low Noise Amplifier Using Microstrip Transmission
Line Matching Network 7-213
RF Budget Harmonic Balance Analysis of Low-IF Receiver, IP2 and NF
.. 7-220
Analysis of Coplanar Waveguide Transmission Line in X-Band Application
.. 7-226
Extract S-Parameters from Circuit 7-231
Extract S-Parameters from Mutual Inductor 7-235
Lossy Multiconductor Transmission Line Circuit 7-240
Richards-Kuroda Workflow for RF Filter Circuit 7-247
Design RF Chain Using RF Antenna Object 7-257
Circuit Envelope Simulation at MATLAB Command Line 7-269

ix

RF Objects

* “RF Data Objects” on page 1-2

» “RF Circuit Objects” on page 1-4

* “RF Model Objects” on page 1-8

* “RF Network Parameter Objects” on page 1-10

1 =rr Objects

RF Data Objects

In this section...

“Overview” on page 1-2

“Types of Data” on page 1-2
“Available Data Objects” on page 1-2
“Data Object Methods” on page 1-3

Overview

RF Toolbox software uses data (rfdata) objects to store:

* Component data created from files or from information that you specify in the MATLAB®
workspace.

* Analyzed data from a frequency-domain simulation of a circuit object.

You can perform basic tasks, such as plotting and network parameter conversion, on the data stored
in these objects. However, data objects are primarily used to store data for use by other RF objects.

Types of Data

The toolbox uses RF data objects to store one or more of the following types of data:

* Network parameters

* Spot noise

* Noise figure

* Third-order intercept point (IP3)
* Power out versus power in

Available Data Objects

The following table lists the available rfdata object constructors and describes the data the
corresponding objects represent. For more information on a particular object, follow the link in the
table to the reference page for that object.

Constructor Description

rfdata.data Data object containing network parameter data

rfdata.ip3 Data object containing IP3 information

rfdata.mixerspur Data object containing mixer spur information from an
intermodulation table

rfdata.network Data object containing network parameter information

rfdata.nf Data object containing noise figure information

rfdata.noise Data object containing noise information

rfdata.power Data object containing power and phase information

1-2

RF Data Objects

Data Object Methods

The following table lists the methods of the data objects, the types of objects on which each can act,

and the purpose of each method.

Method Types of Objects Purpose
extract rfdata.data, Extract specified network parameters from a
rfdata.network circuit or data object and return the result in an

array

read rfdata.data Read RF data parameters from a file to a new or
existing data object.

write rfdata.data Write RF data from a data object to a file.

See Also

More About

. “RF Analysis”

. “RF Circuit Objects” on page 1-4

. “RF Model Objects” on page 1-8

. “RF Network Parameter Objects” on page 1-10

1-3

1 =rr Objects

RF Circuit Objects

1-4

In this section...

“Overview of RF Circuit Objects” on page 1-4
“Components Versus Networks” on page 1-4
“Available Components and Networks” on page 1-5

“Circuit Object Methods” on page 1-6

Overview of RF Circuit Objects

RF Toolbox software uses circuit (rfckt) objects to represent the following components:

* Circuit components such as amplifiers, transmission lines, and ladder filters
* RLC network components
* Networks of RF components

The toolbox represents each type of component and network with a different object. You use these
objects to analyze components and networks in the frequency domain.

Components Versus Networks
You define component behavior using network parameters and physical properties.

To specify an individual RF component:

1 Construct a circuit object to represent the component.
2 Specify or import component data.

You define network behavior by specifying the components that make up the network. These
components can be either individual components (such as amplifiers and transmission lines) or other
networks.

To specify an RF network:

1 Build circuit objects to represent the network components.

2 Construct a circuit object to represent the network.

Note This object defines how to connect the network components. However, the network is
empty until you specify the components that it contains.

3 Specify, as the Ckts property of the object that represents the network, a list of components that
make up the network.

These procedures are illustrated by example in “Model Cascaded RF Network”.

RF Circuit Objects

Available Components and Networks

To create circuit objects that represent components, you use constructors whose names describe the
components. To create circuit objects that represent networks, you use constructors whose names
describe how the components are connected together.

The following table lists the available rfckt object constructors and describes the components or
networks the corresponding objects represent. For more information on a particular object, follow the
link in the table to the reference page for that object.

Constructor Description

rfckt.amplifier Amplifier, described by an rfdata object

rfckt.cascade Cascaded network, described by the list of components and
networks that comprise it

rfckt.coaxial Coaxial transmission line, described by dimensions and
electrical characteristics

rfckt.cpw Coplanar waveguide transmission line, described by dimensions
and electrical characteristics

rfckt.datafile General circuit, described by a data file

rfckt.delay Delay line, described by loss and delay

rfckt.hybrid Hybrid connected network, described by the list of components
and networks that comprise it

rfckt.hybridg Inverse hybrid connected network, described by the list of
components and networks that comprise it

rfckt.lcbandpasspi LC bandpass pi network, described by LC values

rfckt.lcbandpasstee LC bandpass tee network, described by LC values

rfckt.lcbandstoppi LC bandstop pi network, described by LC values

rfckt.lcbandstoptee LC bandstop tee network, described by LC values

rfckt.lchighpasspi LC highpass pi network, described by LC values

rfckt.lchighpasstee LC highpass tee network, described by LC values

rfckt.lclowpasspi LC lowpass pi network, described by LC values

rfckt.lclowpasstee LC lowpass tee network, described by LC values

rfckt.microstrip Microstrip transmission line, described by dimensions and
electrical characteristics

rfckt.mixer Mixer, described by an rfdata object

rfckt.parallel Parallel connected network, described by the list of components
and networks that comprise it

rfckt.parallelplate Parallel-plate transmission line, described by dimensions and
electrical characteristics

rfckt.passive Passive component, described by network parameters

rfckt.rlcgline RLCG transmission line, described by RLCG values

rfckt.series Series connected network, described by the list of components

and networks that comprise it

1-5

1 =rr Objects

Constructor Description

rfckt.seriesrlc Series RLC network, described by RLC values
rfckt.shuntrlc Shunt RLC network, described by RLC values
rfckt.twowire Two-wire transmission line, described by dimensions and

electrical characteristics

rfckt.txline General transmission line, described by dimensions and
electrical characteristics

Circuit Object Methods

The following table lists the methods of the circuit objects, the types of objects on which each can act,
and the purpose of each method.

Method Types of Objects Purpose

analyze All circuit objects Analyze a circuit object in the frequency
domain.

calculate All circuit objects Calculate specified parameters for a circuit
object.

copy All circuit objects Copy a circuit or data object.

extract All circuit objects Extract specified network parameters from a
circuit or data object, and return the result in
an array.

getdata All circuit objects Get data object containing analyzed result of a
specified circuit object.

getz0 rfckt.txline, Get characteristic impedance of a

rfckt.rlcgline, transmission line.

rfckt.twowire,
rfckt.parallelplate,
rfckt.coaxial,
rfdata.microstrip,

rfckt.cpw

listformat All circuit objects List valid formats for a specified circuit object
parameter.

listparam All circuit objects List valid parameters for a specified circuit
object.

loglog All circuit objects Plot specified circuit object parameters using
a log-log scale.

plot All circuit objects Plot the specified circuit object parameters on
an XY plane.

plotyy All circuit objects Plot the specified object parameters with y-
axes on both the left and right sides.

polar All circuit objects Plot the specified circuit object parameters on

polar coordinates.

1-6

RF Circuit Objects

Method Types of Objects Purpose
read rfckt.datafile, Read RF data from a file to a new or existing
rfckt.passive, circuit object.
rfckt.amplifier,
rfckt.mixer
restore rfckt.datafile, Restore data to original frequencies of
rfckt.passive, NetworkData for plotting.
rfckt.amplifier,
rfckt.mixer
semilogx All circuit objects Plot the specified circuit object parameters
using a log scale for the X-axis
semilogy All circuit objects Plot the specified circuit object parameters
using a log scale for the Y-axis
smith All circuit objects Plot the specified circuit object parameters on
a Smith chart.
write All circuit objects Write RF data from a circuit object to a file.
smithplot All circuit objects Plot measurement data on Smith chart
See Also
More About

“RF Model Objects” on page 1-8

“RF Analysis”

“RF Data Objects” on page 1-2

“RF Network Parameter Objects” on page 1-10

1-7

1 =rr Objects

RF Model Objects

In this section...

“Overview of RF Model Objects” on page 1-8
“Available Model Objects” on page 1-8
“Model Object Methods” on page 1-8

Overview of RF Model Objects

RF Toolbox software uses model (rfmodel) objects to represent components and measured data
mathematically for computing information such as time-domain response. Each type of model object
uses a different mathematical model to represent the component.

RF model objects provide a high-level component representation for use after you perform detailed
analysis using RF circuit objects. Use RF model objects to:

* Compute time-domain figures of merit for RF components
* Export Verilog-A models of RF components

Available Model Objects

The following table lists the available rfmodel object constructors and describes the model the
corresponding objects use. For more information on a particular object, follow the link in the table to
the reference page for that object.

Constructor Description

rfmodel. rational Rational function model

Model Object Methods

The following table lists the methods of the model objects, the types of objects on which each can act,
and the purpose of each method.

Method Types of Objects Purpose

fregresp All model objects Compute the frequency response of a model
object.

timeresp All model objects Compute the time response of a model object.

write All model objects Write data from a model object to a file.

See Also

More About

. “RF Analysis”
. “RF Data Objects” on page 1-2
. “RF Circuit Objects” on page 1-4

1-8

RF Model Objects

“RF Network Parameter Objects” on page 1-10

1-9

1 =rr Objects

RF Network Parameter Objects

1-10

In this section...

“Overview of Network Parameter Objects” on page 1-10
“Available Network Parameter Objects” on page 1-10
“Network Parameter Object Functions” on page 1-10

Overview of Network Parameter Objects

RF Toolbox software offers network parameter objects for:

* Importing network parameter data from a Touchstone file.
* Converting network parameters.
* Analyzing network parameter data.

Unlike circuit, model, and data objects, you can use existing RF Toolbox functions to operate directly
on network parameter objects.

Available Network Parameter Objects

The following table lists the available network parameter objects and the functions that are used to
construct them. For more information on a particular object, follow the link in the table to the
reference page for that functions.

Network Parameter Object Type Network Parameter Object Function
ABCD Parameter object abcdparameters

Hybrid-g parameter object gparameters

Hybrid parameter object hparameters

S-parameter object sparameters

Y-parameter object yparameters

Z-parameter object zparameters

Network Parameter Object Functions

The following table lists the functions that accept network parameter objects as inputs, the types of
objects on which each can act, and the purpose of each function.

Function Types of Objects Purpose

abcdparameters All network parameter objects |Convert any network
parameters to ABCD
parameters

gparameters All network parameter objects |Convert any network
parameters to hybrid-g
parameters

RF Network Parameter Objects

Function Types of Objects Purpose

hparameters All network parameter objects |Convert any network
parameters to hybrid
parameters

sparameters All network parameter objects |Convert any network
parameters to S-parameters

yparameters All network parameter objects |Convert any network
parameters to Y-parameters

zparameters All network parameter objects |Convert any network
parameters to Z-parameters

cascadesparams S-parameter objects Cascade S-parameters

deembedsparams S-parameter objects De-embed S-parameters

gammain S-parameter objects Calculate input reflection
coefficient

gammaml S-parameter objects Calculate load reflection
coefficient

gammams S-parameter objects Calculate source reflection
coefficient

gammaout S-parameter objects Calculate output reflection
coefficient

ispassive S-parameter objects Check S-parameter data
passivity

makepassive S-parameter objects Make S-parameter data passive

newref S-parameter objects Change reference impedance

powergain S-parameter objects Calculate power gain

rfplot S-parameter objects Plot network parameters

rfinterpl All network parameter objects |Interpolate network parameters
at new frequencies

rfparam All network parameter objects |Extract vector of network
parameters

s2tf S-parameter objects Create transfer function from S-
parameters

stabilityk S-parameter objects Calculate stability factor K of 2-
port network

stabilitymu S-parameter objects Calculate stability factor u of 2-
port network

smith All network parameter objects |Plot network parameter data on
a Smith® Chart

smithplot All network parameter objects |Plot measurement data on

Smith chart

1-11

1 rr Objects

See Also

More About

. “RF Data Objects” on page 1-2

. “RF Circuit Objects” on page 1-4
. “RF Model Objects” on page 1-8
. “S-Parameter Notation”

1-12

Model an RF Component

* “Create RF Objects” on page 2-2

» “Specify or Import Component Data” on page 2-4
» “Specify Operating Conditions” on page 2-12

* “Process File Data for Analysis” on page 2-14

* “Analyze and Plot RF Components” on page 2-19

* “Export Component Data to File” on page 2-27

* “Basic Operations with RF Objects” on page 2-29

2 Model an RF Component

Create RF Objects

2-2

In this section...

“Construct a New Object” on page 2-2
“Copy an Existing Object” on page 2-3

Construct a New Object

You can create any rfdata, rfckt or rfmodel object by calling the object constructor. You can
create an rfmodel object by fitting a rational function to passive component data.

This section contains the following topics:

+ “Call the Ohject Constructor” on page 2-2
* “Fit a Rational Function to Passive Component Data” on page 2-3

Call the Object Constructor

To create a new RF object with default property values, you call the object constructor without any
arguments:

h = objecttype.objectname
where:

* his the handle to the new object.
* objecttype is the object type (rfdata, rfckt, or rfmodel).
* objectname is the object name.

For example, to create an RLCG transmission line object, type:
h = rfckt.rlcgline
because the RLCG transmission line object is a circuit (rfckt) object named rlcgline.

The following code illustrates how to call the object constructor to create a microstrip transmission
line object with default property values. The output t1 is the handle of the newly created
transmission line object.

tl = rfckt.microstrip

RF Toolbox software lists the properties of the transmission line you created along with the
associated default property values.

tl =
Name: 'Microstrip Transmission Line'
nPort: 2
AnalyzedResult: []
LineLength: 0.0100
StubMode: 'NotAStub'
Termination: 'NotApplicable’
Width: 6.0000e-004
Height: 6.3500e-004

Create RF Objects

Thickness: 5.0000e-006
EpsilonR: 9.8000
SigmaCond: Inf
LossTangent: 0
The reference page describes these properties in detail, rfckt.microstrip.
Fit a Rational Function to Passive Component Data

You can create a model object by fitting a rational function to passive component data. You use this
approach to create a model object that represents one of the following using a rational function:

* A circuit object that you created and analyzed.
» Data that you imported from a file.

For more information, see “Fit Model Object to Circuit Object Data” on page 2-25.

Copy an Existing Object

You can create a new object with the same property values as an existing object by using the copy
function to copy the existing object. This function is useful if you have an object that is similar to one
you want to create.

For example,
t2 = copy(tl);

creates a new object, t2, which has the same property values as the microstrip transmission line
object, t1.

You can later change specific property values for this copy. For information on modifying object
properties, see “Specify or Import Component Data” on page 2-4.

Note The syntax t2 = t1 copies only the object handle and does not create a new object.

See Also

More About

. “Create and Import Circuits” on page 4-5
. “Process File Data for Analysis” on page 2-14

2-3

2 Model an RF Component

Specify or Import Component Data

2-4

In this section...

“RF Object Properties” on page 2-4

“Set Property Values” on page 2-4

“Import Property Values from Data Files” on page 2-6

“Use Data Objects to Specify Circuit Properties” on page 2-8
“Retrieve Property Values” on page 2-9

“Reference Properties Directly Using Dot Notation” on page 2-11

RF Object Properties

Object properties specify the behavior of an object. You can specify object properties, or you can
import them from a data file. To learn about properties that are specific to a particular type of circuit,
data, or model object, see the reference page for that type of object.

Note The “RF Circuit Objects” on page 1-4, “RF Data Objects” on page 1-2,“RF Model Objects” on
page 1-8 sections list the available types of objects and provide links to their reference pages.

Set Property Values

You can specify object property values when you construct an object or you can modify the property
values of an existing object.

This section contains the following topics:

» “Specify Property Values at Construction” on page 2-4
* “Change Property Values of an Existing Object” on page 2-5

Specify Property Values at Construction

To set a property when you construct an object, include a comma-separated list of one or more
property/value pairs in the argument list of the object construction command. A property/value pair
consists of the arguments 'PropertyName' ,PropertyValue, where:

* PropertyName is a character vector specifying the property name. The name is case-insensitive.
In addition, you need only type enough letters to uniquely identify the property name. For
example, 'st' is sufficient to refer to the StubMode property.

Note You must use single quotation marks around the property name.

* PropertyValue is the value to assign to the property.

Include as many property names in the argument list as there are properties you want to set. Any
property values that you do not set retain their default values. The circuit and data object reference
pages list the valid values as well as the default value for each property.

This section contains examples of how to perform the following tasks:

Specify or Import Component Data

* “Construct Components with Specified Properties” on page 2-5
* “Construct Networks of Specified Components” on page 2-5

Construct Components with Specified Properties

The following code creates a coaxial transmission line circuit object to represent a coaxial
transmission line that is 0.05 meters long. Notice that the toolbox lists the available properties and
their values.

tl rfckt.coaxial('LineLength',0.05)

tl

Name: 'Coaxial Transmission Line'
nPort: 2
AnalyzedResult: []
LineLength: 0.0500
StubMode: 'NotAStub'
Termination: 'NotApplicable’
OuterRadius: 0.0026
InnerRadius: 7.2500e-004
MuR: 1
EpsilonR: 2.3000
LossTangent: 0
SigmaCond: Inf

Construct Networks of Specified Components

To combine a set of RF components and existing networks to form an RF network, you create a
network object with the Ckts property set to an array containing the handles of all the circuit objects
in the network.

Suppose you have the following RF components:

tl = rfckt.coaxial('LineLength',0.05);
al = rfckt.amplifier;
t2 = rfckt.coaxial('LineLength',0.1);

The following code creates a cascaded network of these components:
casc_network = rfckt.cascade('Ckts',{t1l,al,t2});

Change Property Values of an Existing Object

There are two ways to change the properties of an existing object:

* Using the set command
» Using structure-like assignments called dot notation

This section discusses the first option. For details on the second option, see “Reference Properties
Directly Using Dot Notation” on page 2-11.

To modify the properties of an existing object, use the set command with one or more property/value
pairs in the argument list. The general syntax of the command is

set(h,Propertyl', valuel, 'Property2',value2,...)

where

2-5

2 Model an RF Component

2-6

* his the handle of the object.
* 'Propertyl',valuel, 'Property2',value2, ... isthe list of property/value pairs.

For example, the following code creates a default coaxial transmission line object and changes it to a
series stub with open termination.

t1l = rfckt.coaxial;
set(tl, 'StubMode', 'series', 'Termination', 'open')

Note You can use the set command without specifying any property/value pairs to display a list of
all properties you can set for a specific object. This example lists the properties you can set for the
coaxial transmission line t1:

set(tl)

ans =
LineLength: {}
StubMode: {}
Termination: {}
OQuterRadius: {}
InnerRadius: {}
MuR: {}
EpsilonR: {}

LossTangent: {}
SigmaCond: {}

Import Property Values from Data Files

RF Toolbox software lets you import industry-standard data files, MathWorks® AMP files, and
Agilent® P2D and S2D files into specific objects. This import capability lets you simulate the behavior
of measured components.

You can import the following file formats:

* Industry-standard file formats — Touchstone SNP, YNP, ZNP, HNP, and GNP formats specify the
network parameters and noise information for measured and simulated data.

For more information on Touchstone files, see https://ibis.org/connector/
touchstone specll.pdf.

* Agilent P2D file format — Specifies amplifier and mixer large-signal, power-dependent network
parameters, noise data, and intermodulation tables for several operating conditions, such as
temperature and bias values.

The P2D file format lets you import system-level verification models of amplifiers and mixers.

* Agilent S2D file format — Specifies amplifier and mixer network parameters with gain
compression, power-dependent S,; parameters, noise data, and intermodulation tables for several
operating conditions.

The S2D file format lets you import system-level verification models of amplifiers and mixers.

* MathWorks amplifier (AMP) file format — Specifies amplifier network parameters, output power
versus input power, noise data and third-order intercept point.

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

Specify or Import Component Data

For more information about .amp files, see “AMP File Data Sections” on page 5-2.

This section contains the following topics:

* “Objects Used to Import Data from a File” on page 2-7
* “How to Import Data Files” on page 2-7

Objects Used to Import Data from a File

One data object and three circuit objects accept data from a file. The following table lists the objects
and any corresponding data format each supports.

Object Description Supported Format(s)

rfdata.data Data object containing network |Touchstone, AMP, P2D, S2D
parameter data, noise figure,
and third-order intercept point

rfckt.amplifier Amplifier Touchstone, AMP, P2D, S2D
rfckt.mixer Mixer Touchstone, AMP, P2D, S2D
rfckt.passive Generic passive component Touchstone

How to Import Data Files

To import file data into a circuit or data object at construction, use a read command of the form:
obj = read(obj type,'filename');

where

* obj is the handle of the circuit or data object.

* o0bj type is the type of object in which to store the data, from the list of objects that accept file
data shown in “Objects Used to Import Data from a File” on page 2-7.

» filename is the name of the file that contains the data.

For example,

ckt obj=read(rfckt.amplifier, 'default.amp');

imports data from the file default.amp into an rfckt.amplifier object.

You can also import file data into an existing circuit object. The following commands are equivalent to
the previous command:

ckt obj=rfckt.amplifier;
read(ckt obj, 'default.amp');

Note When you import component data from a . p2d or .s2d file, properties are defined for several
operating conditions. You must select an operating condition to specify the object behavior, as
described in “Specify Operating Conditions” on page 2-12.

2-7

2 Model an RF Component

2-8

Use Data Objects to Specify Circuit Properties

To specify a circuit object property using a data object, use the set command with the name of the
data object as the value in the property/value pair.

For example, suppose you have the following rfckt.amplifier and rfdata.nf objects:

amp = rfckt.amplifier
f = 2.0e9;
nf = 13.3244;

nfdata = rfdata.nf('Freq',f, 'Data’',nf)

The following command uses the rfdata.nf data object to specify the rfckt.amplifier
NoiseData property:

set(amp, 'NoiseData',nfdata)
Set Circuit Object Properties Using Data Objects

In this example, you create a circuit object. Then, you create three data objects and use them to
update the properties of the circuit object.

1 Create an amplifier object. This circuit object, rfckt.amplifier, has a network parameter,
noise data, and nonlinear data properties. These properties control the frequency response of the
amplifier, which is stored in the AnalyzedResult property. By default, all amplifier properties
contain values from the default.amp file. The NetworkData property is an rfdata.network
object that contains 50-ohm S-parameters. The NoiseData property is an rfdata.noise object
that contains frequency-dependent spot noise data. The NonlinearData property is an
rfdata.power object that contains output power and phase information.

amp = rfckt.amplifier

The toolbox displays the following output:
amp =

Name: 'Amplifier'
nPort: 2
AnalyzedResult: [1x1 rfdata.data]
IntpType: 'Linear'
NetworkData: [1x1 rfdata.network]
NoiseData: [1x1 rfdata.noise]
NonlinearData: [1x1 rfdata.power]

2 Create a data object that stores network data. Type the following set of commands at the
MATLAB prompt to create an rfdata.network object that stores the 2-port Y-parameters at
2.08 GHz, 2.10 GHz, and 2.15 GHz. Later in this example, you use this data object to update the
NetworkData property of the rfckt.amplifier object.

f =1[2.08 2.10 2.15]*1.0e9;

y(:,:,1) = [-.0090-.01041i, .0013+.00181i; ...
-.2947+.2961i, .0252+.00751i];

y(:,:,2) = [-.0086-.00471i, .0014+.00191i; ...
-.3047+.3083i, .0251+.00861i];

y(:,:,3) = [-.0051+.0130i, .0017+.00201;

-.3335+.3861i, .0282+.0110i];

Specify or Import Component Data

netdata = rfdata.network('Type','Y PARAMETERS', ...
'Freq',f,'Data',y)

The toolbox displays the following output:
netdata =

Name: 'Network parameters'
Type: 'Y _PARAMETERS'
Freq: [3x1 double]
Data: [2x2x3 double]
Z0: 50

3 Create a data object that stores noise figure values. Type the following set of commands at
the MATLAB prompt to create a rfdata.nf object that contains noise figure values, in dB, at
seven different frequencies. Later in this example, you use this data object to update the
NoiseData property of the rfckt.amplifier object.

f =1[1.93 2.06 2.08 2.10 2.15 2.30 2.40]*1.0e9;
nf=[12.4521 13.2466 13.6853 14.0612 13.4111 12.9499 13.3244];

nfdata = rfdata.nf('Freq',f, 'Data’',nf)

The toolbox displays the following output:
nfdata =

Name: 'Noise figure'
Freq: [7x1 double]
Data: [7x1 double]

4 Create a data object that stores output third-order intercept points. Type the following
command at the MATLAB prompt to create a rfdata.ip3 object that contains an output third-
order intercept point of 8.45 watts, at 2.1 GHz. Later in this example, you use this data object to
update the NonlinearData property of the rfckt.amplifier object.

ip3data = rfdata.ip3('Type','0IP3', 'Freq',2.1e9, 'Data',8.45)

The toolbox displays the following output:

ip3data =
Name: '3rd order intercept'
Type: 'OIP3'
Freq: 2.1000e+009
Data: 8.4500

5 Update the properties of the amplifier object. Type the following set of commands at the
MATLAB prompt to update the NetworkData, NoiseData, and NonlinearData properties of
the amplifier object with the data ohjects you created in the previous steps:

amp.NetworkData = netdata;
amp.NoiseData = nfdata;
amp.NonlinearData = ip3data;

Retrieve Property Values

You can retrieve one or more property values of an existing object using the get command.

2-9

2 Model an RF Component

This section contains the following topics:

* “Retrieve Specified Property Values” on page 2-10
* “Retrieve All Property Values” on page 2-10

Retrieve Specified Property Values

To retrieve specific property values for an object, use the get command with the following syntax:
PropertyValue = get(h,PropertyName)

where

* PropertyValue is the value assigned to the property.
* his the handle of the object.
* PropertyName is a character vector specifying the property name.

For example, suppose you have the following coaxial transmission line:
h2 = rfckt.coaxial;

The following code retrieves the value of the inner radius and outer radius for the coaxial
transmission line:

ir = get(h2, 'InnerRadius"')
or = get(h2, 'OuterRadius"')
ir =
7.2500e-004
or =
0.0026

Retrieve All Property Values

To display a list of properties associated with a specific object as well as their current values, use the
get command without specifying a property name.

For example:

get(h2)
Name: 'Coaxial Transmission Line'
nPort: 2
AnalyzedResult: []
LineLength: 0.0100
StubMode: 'NotAStub'
Termination: 'NotApplicable’
OuterRadius: 0.0026
InnerRadius: 7.2500e-004
MuR: 1
EpsilonR: 2.3000
LossTangent: 0
SigmaCond: Inf

Note This list includes read-only properties that do not appear when you type set (h2). Fora
coaxial transmission line object, the read-only properties are Name, nPort, and AnalyzedResult.

2-10

Specify or Import Component Data

The Name and nPort properties are fixed by the toolbox. The AnalyzedResult property value is
calculated and set by the toolbox when you analyze the component at specified frequencies.

Reference Properties Directly Using Dot Notation

An alternative way to query for or modify property values is by structure-like referencing. The field
names for RF objects are the property names, so you can retrieve or modify property values with the
structure-like syntax.

* PropertyValue = rfobj.PropertyName stores the value of the PropertyName property of
the rfobj object in the PropertyValue variable. This command is equivalent to
PropertyValue = get(rfobj, 'PropertyName').

* rfobj.PropertyName = PropertyValue sets the value of the PropertyName property to
PropertyValue for the rfobj object. This command is equivalent to
set(rfobj, 'PropertyName' ,PropertyValue).

For example, typing

ckt = rfckt.amplifier('IntpType', 'cubic');
ckt.IntpType

gives the value of the property IntpType for the circuit object ckt.

ans =
Cubic

Similarly,
ckt.IntpType = 'linear’;
resets the interpolation method to linear.

You do not need to type the entire field name or use uppercase characters. You only need to type the
minimum number of characters sufficient to identify the property name uniquely. Thus entering the
commands

ckt = rfckt.amplifier('IntpType', 'cubic');
ckt.in

also produces
ans =
Cubic

See Also

More About

. “Modify Component Data” on page 4-14
. “Create and Import Circuits” on page 4-5

2-11

2 Model an RF Component

Specify Operating Conditions

2-12

In this section...

“Available Operating Conditions” on page 2-12
“Set Operating Conditions” on page 2-12
“Display Available Operating Condition Values” on page 2-12

Available Operating Conditions

Agilent P2D and S2D files contain simulation results at one or more operating conditions. Operating
conditions define the independent parameter settings that are used when creating the file data. The
specified conditions differ from file to file.

When you import component data from a . p2d or .s2d file, the object contains property values for
several operating conditions. The available conditions depend on the data in the file. By default, RF
Toolbox software defines the object behavior using the property values that correspond to the
operating conditions that appear first in the file. To use other property values, you must select a
different operating condition.

Set Operating Conditions

To set the operating conditions of a circuit or data object, use a setop command of the form:
setop(, 'Conditionl',valuel, ..., 'ConditionN',valueN,...)

where

+ is the handle of the circuit or data object.

* (Conditionl,valuel,...,ConditionN,valueN are the condition/value pairs that specify the
operating condition.

For example,
setop(myp2d, 'BiasL', 2, 'BiasU', 6.3)

specifies an operating condition of BiasL = 2 and BiasU = 6.3 for myp2d.

Display Available Operating Condition Values

To display a list of available operating condition values for a circuit or data object, use the setop
method.

setop(obj)
displays the available values for all operating conditions of the object obj.
setop(obj, 'Conditionl')

displays the available values for Conditionl.

Specify Operating Conditions

See Also
rftool

More About

. “Manage Circuits and Sessions” on page 4-21
. “Model an RF Network” on page 4-24

. “Analyze Circuits” on page 4-15

2-13

2 Model an RF Component

Process File Data for Analysis

2-14

In this section...

“Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters” on page 2-14
“Extract M-Port S-Parameters from N-Port S-Parameters” on page 2-15
“Cascade N-Port S-Parameters” on page 2-16

Convert Single-Ended S-Parameters to Mixed-Mode S-Parameters

After you import file data (as described in “Import Property Values from Data Files” on page 2-6), you
can convert a matrix of single-ended S-parameter data to a matrix of mixed-mode S-parameters.

This section contains the following topics:

» “Functions for Converting S-Parameters” on page 2-14
* “Convert S-Parameters” on page 2-14

Functions for Converting S-Parameters

To convert between 4-port single-ended S-parameter data and 2-port differential-, common-, and

cross-mode S-parameters, use one of these functions:

* s2scc — Convert 4-port, single-ended S-parameters to 2-port, common-mode S-parameters (S.).

* s2scd — Convert 4-port, single-ended S-parameters to 2-port, cross-mode S-parameters (Sq).

* s2sdc — Convert 4-port, single-ended S-parameters to cross-mode S-parameters (Sq.).

* s2sdd — Convert 4-port, single-ended S-parameters to 2-port, differential-mode S-parameters
(Saa)-

To perform the above conversions all at once, or to convert larger data sets, use one of these
functions:

* s2smm — Convert 4N-port, single-ended S-parameters to 2N-port, mixed-mode S-parameters.
* smm2s — Convert 2N-port, mixed-mode S-parameters to 4N-port, single-ended S-parameters.

Conversion functions support a variety of port orderings. For more information on these functions,
see the corresponding reference pages.

Convert S-Parameters

In this example, use the toolbox to import 4-port single-ended S-parameter data from a file, convert
the data to 2-port differential S-parameter data, and create a new rfckt object to store the
converted data for analysis.

At the MATLAB prompt:
1 Type this command to import data from the file default. s4p:

SingleEnded4Port = read(rfdata.data, 'default.s4p');

2 Type this command to convert 4-port single-ended S-parameters to 2-port mixed-mode S-
parameters:

Process File Data for Analysis

DifferentialSParams = s2sdd(SingleEnded4Port.S Parameters);

Note The S-parameters that you specify as input to the s2sdd function are the ones the toolbox
stores in the S Parameters property of the rfdata.data object.

3 Type this command to create an rfckt.passive object that stores the 2-port differential S-
parameters for simulation:

DifferentialCkt = rfckt.passive('NetworkData',
rfdata.network('Data', DifferentialSParams, 'Freq',
SingleEnded4PortData.Freq));

Extract M-Port S-Parameters from N-Port S-Parameters

After you import file data (as described in “Import Property Values from Data Files” on page 2-6), you
can extract a set of data with a smaller number of ports by terminating one or more ports with a
specified impedance.

This section contains the following topics:

» “Extract S-Parameters” on page 2-15
» “Extract S-Parameters From Imported File Data” on page 2-16

Extract S-Parameters

To extract M-port S-parameters from N-port S-parameters, use the snp2smp function with the
following syntax:

S _params _mp = snp2smp(s_params np, zO, n2m_index, zt)
where

* s params_np is an array of N-port S-parameters with a reference impedance z0.
* s params_mp is an array of M-port S-parameters.

* n2m index is a vector of length M specifying how the ports of the N-port S-parameters map to
the ports of the M-port S-parameters. n2m_index (i) is the index of the port from s params np
that is converted to the ith port of s params mp.

» zt is the termination impedance of the ports.

The following figure illustrates how to specify the ports for the output data and the termination of the
remaining ports.

2-15

2 Model an RF Component

2-16

Zr{f 1 _] N-Part [N 9zTiN)
{23 2 N-1

k BzT{k)

i j |

For more details about the arguments to this function, see the snp2smp reference page.

Extract S-Parameters From Imported File Data

In this example, use the toolbox to import 16-port S-parameter data from a file, convert the data to 4-
port S-parameter data by terminating the remaining ports, and create a new rfckt object to store
the extracted data for analysis.

At the MATLAB prompt:

1

Type this command to import data from the file default.s16p into an rfdata.data object,
SingleEndedl6PortData:

SingleEndedl6PortData = read(rfdata.data, 'default.sl6p');

Type this command to convert 16-port S-parameters to 4-port S-parameters by using ports 1, 16,
2, and 15 as the first, second, third, and fourth ports, and terminating the remaining 12 ports
with an impedance of 50 ohms:

N2M_index = [1 16 2 15];

FourPortSParams = snp2smp(SingleEndedl6PortData.S Parameters, ...
SingleEndedl6PortData.Z0, N2M index, 50);

Note The S-parameters that you specify as input to the snp2smp function are the ones the
toolbox stores in the S Parameters property of the rfdata.data object.

Type this command to create an rfckt.passive object that stores the 4-port S-parameters for
simulation:

FourPortChannel = rfckt.passive('NetworkData',
rfdata.network('Data', FourPortSParams, 'Freq',
SingleEndedl6PortData.Freq));

Cascade N-Port S-Parameters

After you import file data (as described in “Import Property Values from Data Files” on page 2-6), you
can cascade two or more networks of N-port S-parameters.

Process File Data for Analysis

To cascade networks of N-port S-parameters, use the cascadesparams function with the following
syntax:

s _params = cascadesparams(sl params,s2 params,...,Sh_params,nconn)
where

* s params is an array of cascaded S-parameters.
* sl params,s2 params,...,sn_params are arrays of input S-parameters.

* nconn is a positive scalar or a vector of size n-1 specifying how many connections to make
between the ports of the input S-parameters. cascadesparams connects the last port(s) of one
network to the first port(s) of the next network.

For more details about the arguments to this function, see the cascadesparams reference page.
Import and Cascade N-Port S-Parameters

In this example, use the toolbox to import 16-port and 4-port S-parameter file data and cascade the
two S-parameter networks by connecting the last three ports of the 16-port network to the first three
ports of the 4-port network. Then, create a new rfckt object to store the resulting network for
analysis.

At the MATLAB prompt:

1 Type these commands to import data from the files default.s16p and default.s4p, and
create the 16- and 4-port networks of S-parameters:

S 16Port = read(rfdata.data, 'default.slép');
S 4Port = read(rfdata.data, 'default.s4p');
freq = [2e9 2.1e9];

analyze(S 16Port, freq);

analyze(S 4Port, freq);

sparams_16p = S 16Port.S Parameters;
sparams 4p = S 4Port.S Parameters;

2 Type this command to cascade 16-port S-parameters and 4-port S-parameters by connecting
ports 14, 15, and 16 of the 16-port network to ports 1, 2, and 3 of the 4-port network:
sparams_cascaded = cascadesparams(sparams_16p, sparams_4p,3)
cascadesparams creates a 14-port network. Ports 1-13 are the first 13 ports of the 16-port
network. Port 14 is the fourth port of the 4-port network.

3 Type this command to create an rfckt.passive object that stores the 14-port S-parameters for
simulation:

Cktl4 = rfckt.passive('NetworkData',
rfdata.network('Data', sparams cascaded, 'Freq',
freq));

For more examples of how to use this function, see the cascadesparams reference page.

2-17

2 Model an RF Component

See Also

More About

. “S-Parameter Notation”
. “AMP File Data Sections” on page 5-2
. “Determining Parameter Formats” on page 6-2

2-18

Analyze and Plot RF Components

Analyze and Plot RF Components

In this section...

“Analyze Networks in Frequency Domain” on page 2-19
“Visualize Component and Network Data” on page 2-19

“Compute and Plot Time-Domain Specifications” on page 2-24

Analyze Networks in Frequency Domain

RF Toolbox lets you analyze RF components and networks in the frequency domain. You use the
analyze function to analyze a circuit object over a specified set of frequencies.

For example, to analyze a coaxial transmission line from 1 GHz to 2.9 GHz in increments of 10 MHz:

ckt = rfckt.coaxial;
f = [1.0e9:1e7:2.9e9];
analyze(ckt,f);

Note For all circuits objects except those that contain data from a file, you must perform a
frequency-domain analysis with the analyze method before visualizing component and network
data. For circuits that contain data from a file, the toolbox performs a frequency-domain analysis
when you use the read method to import the data.

When you analyze a circuit object, the toolbox computes the circuit network parameters, noise figure
values, and output third-order intercept point (OIP3) values at the specified frequencies and stores
the result of the analysis in the object's AnalyzedResult property.

For more information, see the analyze function page.

Visualize Component and Network Data

The RF Toolbox lets you validate the behavior of circuit objects that represent RF components and
networks by plotting the following data:
* Large- and small-signal S-parameters
* Noise figure

* Output third-order intercept point

* Power data

* Phase noise

* Voltage standing-wave ratio

* Power gain

* Group delay

* Reflection coefficients

» Stability data

* Transfer function

2-19

2 Model an RF Component

This table summarizes the available plots and charts, along with the functions you can use to create
each one and a description of its contents.

Plot Type Functions Plot Contents
“Rectangular Plot” on page 2-21 |plot Parameters as a function of frequency or,
where applicable, operating condition.
plotyy The available parameters include:
loglog * S-parameters
- * Noise figure
semilogx
g * Voltage standing-wave ratio (VSWR)
semilogy + OIP3
“Budget Plot” on page 2-21 plot Parameters as a function of frequency for
each component in a cascade, where the
curve for a given component represents
the cumulative contribution of each RF
component up to and including the
parameter value of that component.
“Mixer Spur Plot” on page 2-22 plot Mixer spur power as a function of
frequency for an rfckt.mixer object or
an rfckt.cascade object that contains
a mixer.
“Polar Plots and Smith Charts®” |polar Polar plot: Magnitude and phase of S-
on page 2-23 parameters as a function of frequency.
smithplot

Smith plot: Real and imaginary parts of
S-parameters as a function of frequency,
used for analyzing the reflections caused
by impedance mismatch.

For each plot you create, you choose a parameter to plot and, optionally, a format in which to plot
that parameter. The plot format defines how the RF Toolbox displays the data on the plot. The
available formats vary with the data you select to plot. The data you can plot depends on the type of
plot you create.

Note You can use the listparam function to list the parameters of a specified circuit object that are
available for plotting. You can use the listformat function to list the available formats for a
specified circuit object parameter.

The following topics describe the available plots:

* “Rectangular Plot” on page 2-21

* “Budget Plot” on page 2-21

* “Mixer Spur Plot” on page 2-22

* “Polar Plots and Smith Charts®” on page 2-23

2-20

Analyze and Plot RF Components

Rectangular Plot

You can plot any parameters that are relevant to your object on a rectangular plot. You can plot
parameters as a function of frequency for any object. When you import object data from a . p2d

or .s2d file, you can also plot parameters as a function of any operating condition from the file that
has numeric values, such as bias. In addition, when you import object data from a . p2d file, you can
plot large-signal S-parameters as a function of input power or as a function of frequency. These
parameters are denoted LS11, LS12, LS21, and LS22.

This table summarizes the methods that are available in the toolbox for creating rectangular plots
and describes the uses of each one. For more information on a particular type of plot, follow the link
in the table to the documentation for that method.

Method Description

plot Plot of one or more object parameters

plotyy Plot of one or more object parameters with y-axes on both the
left and right sides

semilogx Plot of one or more object parameters using a log scale for the X-
axis

semilogy Plot of one or more object parameters using a log scale for the Y-
axis

loglog Plot of one or more object parameters using a log-log scale

Budget Plot

You use the link budget or budget plot to understand the individual contribution of each component
to a plotted parameter value in a cascaded network with multiple components. The budget plot shows
one or more curves of parameter values as a function of frequency, ordered by the circuit index of the
cascaded network.

Consider the following cascaded network:

casc = rfckt.cascade('Ckts',...
{rfckt.amplifier, rfckt.lcbandpasspi, rfckt.txline})

This figure shows how the circuit index is assigned to each component in the cascade, based on its
sequential position in the network.

rfchkt.amplifier rfckt.lcbandpasspi rfochkt.txline
object object object
[Index= 1) [Index =27 [Index =3)

You create a 3-D budget plot for this cascade using the plot method with the second argument set to
"budget’, as shown in the following command:

analyze(casc,linspace(1le9,3e9,100));
plot(casc, 'budget', 's21")

Note that you have to analyze your circuit before plotting the budget plot and by default the budget
plot is a 2-D plot. If you specify the array of frequencies in the analyze function you can visualize the

2-21

2 Model an RF Component

40 -

20

204
40 .

-60 4

Sz‘ [Magnitude (decibels)]

-80

2-22

budget results in 3-D. A curve on the budget plot for each circuit index represents the contributions
to the parameter value of the RF components up to that index. This figure shows the budget plot.

ions to $21 from components 1,

o
2,and 3

Contributions to S21 from components 1
and 2

to S21 from component 1

25 ™~ 2

Freq [GHz] A Stage of cascade

If you specify two or more parameters, the RF Toolbox puts the parameters in a single plot. You can
only specify a single format for all the parameters.

Mixer Spur Plot

You use the mixer spur plot to understand how mixer nonlinearities affect output power at the desired
mixer output frequency and at the intermodulation products that occur at the following frequencies:

fout = N * fin+ M * fr0
where

* fin is the input frequency.
* fLo is the local oscillator frequency.
* N and M are integers.

The RF toolbox calculates the output power from the mixer intermodulation table (IMT). These tables
are described in detail in the “Visualize Mixer Spurs” on page 7-96 example.

The mixer spur plot shows power as a function of frequency for an rfckt.mixer object or an
rfckt.cascade object that contains a mixer. By default, the plot is three-dimensional and shows a
stem plot of power as a function of frequency, ordered by the circuit index of the object. You can
create a two-dimensional stem plot of power as a function of frequency for a single circuit index by
specifying the index in the mixer spur plot command.

Consider the following cascaded network:

FirstCkt = rfckt.amplifier('NetworkData’,
rfdata.network('Type', 'S', 'Freq', 2.1e9,
'Data', [0,0;10,0]), 'NoiseData', 0, 'NonlinearData', inf);
SecondCkt = read(rfckt.mixer, 'samplespurl.s2d');
ThirdCkt = rfckt.lcbandpasstee('L', [97.21 3.66 97.21]*1le-9,
'C', [1.63 43.25 1.63]1*1.0e-12);
CascadedCkt = rfckt.cascade('Ckts',
{FirstCkt, SecondCkt, ThirdCkt});

This shows how the circuit index is assigned to the components in the cascade, based on its
sequential position in the network.

Analyze and Plot RF Components

Power [dBm)]

| .
| LA Mixer Filter

I
|
|
-
|
— —T—
I
I

[
[
1
Circuit Index 0 Circuit Index 1 Circuit Index 2 Circult Index 3

* Circuit index 0 corresponds to the cascade input.
» Circuit index 1 corresponds to the LNA output.

* Circuit index 2 corresponds to the mixer output.
e Circuit index 3 corresponds to the filter output.

You create a spur plot for this cascade using the plot method with the second argument set to
'mixerspur’', as shown in the following command:

plot(CascadedCkt, 'mixerspur')

Within the three dimensional plot, the stem plot for each circuit index represents the power at that
circuit index. This figure shows the mixer spur plot.

L] S\gnal.‘
@ Spurs
. L |
————— Qutput power of component 3

QOutput power of component 2

Qutput power of component 1

Input power of component 1

Freq [GHz) 30

Stage of cascade

For more information on mixer spur plots, see the plot reference page.
Polar Plots and Smith Charts®

You can use the RF toolbox to generate Polar plots and Smith charts. If you specify two or more
parameters, the RF toolbox puts the parameters in a single plot.

The following table describes the Polar plot and Smith charts options, as well as the available
parameters.

Note LS11, LS12, LS21, and LS22 are large-signal S-parameters. You can plot these parameters as a
function of input power or as a function of frequency.

2-23

2 Model an RF Component

2-24

Plot Type Method Parameter

Polar plane polar S11, S12,S21, S22

LS11, LS12, LS21, LS22
(Objects with data from a P2D
file only)

Z Smith chart smithplot with type S11, S22

argument setto 'z
LS11, LS22 (Objects with data

from a P2D file only)

Y Smith chart smithplot with type S11, S22

argument setto 'y
LS11, LS22 (Objects with data

from a P2D file only)

ZY Smith chart smithplot with type S11, S22

argument set to 'zy"
LS11, LS22 (Objects with data

from a P2D file only)

By default, the RF toolbox plots the parameter as a function of frequency. When you import block data
from a .p2d or .s2d file, you can also plot parameters as a function of any operating condition from
the file that has numeric values, such as bias.

Note The circle method lets you place circles on a Smith Chart to depict stability regions and
display constant gain, noise figure, reflection and immittance circles. For more information about this
function, see the circle reference page or “Designing Matching Networks for Low Noise Amplifiers”
on page 7-120 example about designing matching networks.

Compute and Plot Time-Domain Specifications
The RF toolbox lets you compute and plot time-domain characteristics for RF components.
This section contains the following topics:

* “Compute Network Transfer Function” on page 2-24
* “Fit Model Object to Circuit Object Data” on page 2-25
* “Compute and Plot Time-Domain Response” on page 2-25

Compute Network Transfer Function

You use the s2tf function to convert 2-port S-parameters to a transfer function. The function returns
a vector of transfer function values that represent the normalized voltage gain of a 2-port network.

The following code illustrates how to read a file data into a passive circuit object, extract the 2-port S-
parameters from the object, and compute the transfer function of the data at the frequencies for
which the data is specified. Here z0 is the reference impedance of the S-parameters, zs is the source
impedance, and z1 is the load impedance. See the s2tf reference page for more information on how
these impedances are used to define the gain.

PassiveCkt = rfckt.passive('File', 'passive.s2p')
z0=50; zs=50; z1=50;

Analyze and Plot RF Components

[SParams, Freq] = extract(PassiveCkt, 'S Parameters', z0);
TransFunc = s2tf(SParams, z0, zs, zl);

Fit Model Object to Circuit Object Data

You use the rationalfit function to fit a rational function to the transfer function of a passive
component. The rationalfit function returns an rfmodel object that represents the transfer
function analytically.

The following code illustrates how to use the rationalfit function to create an
rfmodel. rational object that contains a rational function model of the transfer function that you
created in the previous example.

RationalFunc = rationalfit(Freq, TransFunc)

To find out how many poles the RF toolbox used to represent the data, look at the length of the A
vector of the RationalFunc model object.

nPoles = length(RationalFunc.A)

Note The number of poles is important if you plan to use the RF model object to create a model for
use in another simulator, because a large number of poles can increase simulation time. For
information on how to represent a component accurately using a minimum number of poles, see
“Represent Circuit Object with Model Object” on page 3-4.

Use the freqresp function to compute the frequency response of the fitted data. To validate the
model fit, plot the transfer function of the original data and the frequency response of the fitted data.

Resp = freqresp(RationalFunc, Freq);

plot(Freq, 20*loglO(abs(TransFunc)),
Freq, 20*logl0(abs(Resp)), 'b--'

ylabel('Magnitude of H(s) (decibels)

xlabel('Frequency (Hz)');

legend('Original', 'Fitting result');

title(['Rational fitting with ', int2str(nPoles), ' poles'l]);

re,
)
"),

Compute and Plot Time-Domain Response

You use the timeresp function to compute the time-domain response of the transfer function that
RationalFunc represents. This code illustrates how to create a random input signal, compute the
time-domain response of RationalFunc to the input signal, and plot the results.

SampleTime=1le-11;
NumberOfSamples=4750;
OverSamplingFactor = 25;
InputTime = double((1:NumberOfSamples)')*SampleTime;
InputSignal = ...

sign(randn(1l, ceil(NumberOfSamples/OverSamplingFactor)));
InputSignal repmat(InputSignal, [OverSamplingFactor, 1]);
InputSignal InputSignal(:);

[tresp,t]=timeresp(RationalFunc, InputSignal, SampleTime);
plot(t*1le9,tresp);

title('Fitting Time-Domain Response', 'fonts', 12);
ylabel('Response to Random Input Signal');

xlabel('Time (ns)');

2-25

2 Model an RF Component

For more information about computing the time response of a model object, see the timeresp
function.

See Also

More About

. “RF Analysis”

. “Export Component Data to File” on page 2-27
. “Export RF Objects” on page 4-18

2-26

Export Component Data to File

Export Component Data to File

In this section...

“Available Export Formats” on page 2-27
“How to Export Object Data” on page 2-27

“Export Object Data” on page 2-28

Available Export Formats

RF Toolbox software lets you export data from any rfckt object or from an rfdata.data object to
industry-standard data files and MathWorks AMP files. This export capability lets you store data for
use in other simulations.

Note The toolbox also lets you export data from an rfmodel object to a Verilog-A file. For
information on how to do this, see “Export Verilog-A Model” on page 3-4.

You can export data to the following file formats:

* Industry-standard file formats — Touchstone SNP, YNP, ZNP, HNP, and GNP formats specify the
network parameters and noise information for measured and simulated data.

For more information about Touchstone files, see https://ibis.org/connector/
touchstone specll.pdf.

* MathWorks amplifier (AMP) file format — Specifies amplifier network parameters, output power
versus input power, noise data and third-order intercept point.

For more information about .amp files, see “AMP File Data Sections” on page 5-2.

How to Export Object Data

To export data from a circuit or data object, use a write command of the form
status = write(obj,'filename');

where

* status is a return value that indicates whether the write operation was successful.
* obj is the handle of the circuit or rfdata.data object.
» filename is the name of the file that contains the data.

For example,
status = write(rfckt.amplifier, 'myamp.amp');

exports data from an rfckt.amplifier object to the file myamp.amp.

2-27

https://ibis.org/connector/touchstone_spec11.pdf
https://ibis.org/connector/touchstone_spec11.pdf

2 Model an RF Component

2-28

Export Object Data

In this example, use the toolbox to create a vector of S-parameter data, store it in an rfdata.data
object, and export it to a Touchstone file.

At the MATLAB prompt:
1 Type the following to create a vector, s_vec, of S-parameter values at three frequency values:

s vec(:,:,1) = ...
[-0.724725-0.481324i, -0.685727+1.7826601i;
0.000000+0.0000001, -0.074122-0.3215681i1;
s vec(:,:,2) = ...
[-0.731774-0.471453i, -0.655990+1.7980411i;
0.001399+0.0004631, -0.076091-0.31902511];
s vec(:,:,3) = ...
[-0.738760-0.461585i, -0.626185+1.813092i;
0.002733+0.0008871i, -0.077999-0.3164881i1];

2 Type the following to create an rfdata.data object called txdata with the default property
values:

txdata = rfdata.data;
3 Type the following to set the S-parameter values of txdata to the values you specified in s_vec:

txdata.S Parameters = s vec;
4 Type the following to set the frequency values of txdata to [1e9 2e9 3e9]:

txdata.Freq=1e9*[1 2 3];
5 Type the following to export the data in txdata to a Touchstone file called test.s2p:

write(txdata, 'test')
See Also

More About

. “Export Verilog-A Model” on page 3-4
. “Export RF Objects” on page 4-18

Basic Operations with RF Objects

Basic Operations with RF Objects

This example shows how to read, analyze, and de-embed RF data from a Touchstone data file.

Read and Analyze RF Data from Touchstone Data File

In this example, you create an sparameters object by reading the S-Parameters of a 2-port passive
network stored in the Touchstone format data file, passive.s2p.

Read S-Parameter data from a data file. Use RF Toolbox™ sparameters command to read the
Touchstone data file, passive.s2p. This file contains 50-ohm S-Parameters at frequencies ranging from
315 kHz to 6 GHz. This operation creates an sparameters object, S 50, and stores data from the file
in the object's properties.

S 50 = sparameters('passive.s2p');

Use sparameters to convert the 50-ohm S-Parameters in the sparameters object, to 75-ohm S-
Parameters and save them in the variable S 75. You can easily convert between parameters, for
example, for Y-Parameters from the sparameters object use yparameters and save them in the

variable Y.
Znew = 75;
S 75 = sparameters(S 50, Znew);

Y yparameters(S 75);

Plot the S11 parameters. Use the smithplot command to plot the 75-ohm S11 parameters on a
Smith® Chart:

smithplot(S_75,1,1)

2-29

2 Model an RF Component

View the 75-ohm S-Parameters and Y-Parameters at 6 GHz. Type the following set of commands at the
MATLAB® prompt to display the 2-port 75-ohm S-Parameter values and the 2-port Y-Parameter
values at 6 GHz.

freq
f

S 50.Frequencies;
freq(end)

f = 6.0000e+09
s 6GHz = S 75.Parameters(:,:,end)
s 6GHz = 2x2 complex
-0.0764 - 0.54011i 0.6087 - 0.3018i
0.6094 - 0.3020i -0.1211 - 0.5223i
y 6GHz = Y.Parameters(:,:,end)
y 6GHz = 2x2 complex

0.0210 + 0.0252i -0.0215 - 0.0184i
-0.0215 - 0.01851 0.0224 + 0.02661

For more information, see the sparameters, yparameters, smithplot reference pages.

2-30

Basic Operations with RF Objects

De-Embed S-Parameters

The Touchstone data file samplebjt2.s2p contains S-Parameter data collected from a bipolar transistor
in a test fixture. The input of the fixture has a bond wire connected to a bond pad. The output of the
fixture has a bond pad connected to a bond wire.

The configuration of the bipolar transistor, which is the device under test (DUT), and the fixture is
shown in the following figure.

inH 1nH
AR MY
100 fF—— ouT —— 100 fF

In this example, you remove the effects of the fixture and extract the S-parameters of the DUT.

Create RF circuit objects.

Create a sparameters object for the measured S-Parameters by reading the Touchstone data file
samplebjt2.s2p. Then, create two more circuit objects, one each for the input pad and output pad.

measured data = sparameters('samplebjt2.s2p');

L left = inductor(le-9);
C left = capacitor(100e-15);
input pad = circuit('inputpad');

add(input pad,[1 2],L left)
add(input pad,[2 0],C left)
setports(input pad,[1 0],[2 0O])

L right inductor(le-9);

C right capacitor(100e-15);
output pad = circuit('outputpad');
add(output pad,[3 0],C right)
add(output pad,[3 4],L right)
setports(output pad,[3 0],[4 0])

Analyze the input pad and output pad circuit objects. Analyze the circuit objects at the frequencies at
which the S-Parameters are measured.

freq
input _pad sparams
output pad sparams

measured data.Frequencies;
sparameters(input_pad, freq);
sparameters(output_pad, freq);

De-embed the S-parameters.

Extract the S-Parameters of the DUT from the measured S-Parameters by removing the effects of the
input and output pads.

de _embedded sparams = deembedsparams(measured data,...
input pad sparams, output pad sparams);

2-31

2 Model an RF Component

2-32

Plot the measured and de-embedded S11 parameters. Type the following set of commands at the
MATLAB® prompt to plot both the measured and the de-embedded S11 parameters on a Z Smith®

Chart:

figure;

smithplot(measured data,1,1);

hold on

h smithplot(de embedded sparams,1,1);

{-'"--'}
[100;001];
{'Measured S11', 'De-embedded S11'};

h.LineStyle
h.ColorOrder
h.LegendLabels

Measured 511
— — —De-embedded 511

05

A<

Plot the measured and de-embedded S22 parameters. Type the following set of commands at the
MATLAB® prompt to plot the measured and the de-embedded S22 parameters on a Z Smith® Chart:

figure;

smithplot(measured data,2,2);

hold on

h smithplot(de embedded sparams,2,2);

{"-"''h
[100;0601];
{'Measured S22', 'De-embedded S22'};

h.LineStyle
h.ColorQOrder
h.LegendLabels

Basic Operations with RF Objects

Measured 522
........... De-embedded 522

+-j‘|

+ju- 5{-/-/7_ |I .-“H'"*-\-.. +J2

Plot the measured and de-embedded S21 parameters. Type the following set of commands at the
MATLAB® prompt to plot the measured and the de-embedded S21 parameters, in decibels, on an X-Y
plane:

figure

rfplot(measured data,2,1,'db','r');

hold on

rfplot(de embedded sparams,2,1,'db',':b"');
legend('Measured S {21}', 'De-embedded S {21}');

2-33

2 Model an RF Component

24

Measured 521
De-embedded 5 21

N

[
[

=4
s]

Magnitude (dB)
= >

-
3

a i i i i i i i i i
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Frequency (GHz)

See Also

More About

. “RF Data Objects” on page 1-2

. “RF Circuit Objects” on page 1-4

. “RF Model Objects” on page 1-8

. “RF Network Parameter Objects” on page 1-10

2-34

Export Verilog-A Models

* “Model RF Objects Using Verilog-A” on page 3-2
» “Export Verilog-A Model” on page 3-4

3 Export Verilog-A Models

Model RF Objects Using Verilog-A

3-2

In this section...

“Overview” on page 3-2
“Behavioral Modeling Using Verilog-A” on page 3-2

“Supported Verilog-A Models” on page 3-2

Overview

Verilog-A is a language for modeling the high-level behavior of analog components and networks.
Verilog-A describes components mathematically, for fast and accurate simulation.

RF Toolbox software lets you export a Verilog-A description of your circuit. You can create a Verilog-A
model of any passive RF component or network and use it as a behavioral model for transient analysis
in a third-party circuit simulator. This capability is useful in signal integrity engineering. For example,
you can import the measured four-port S-parameters of a backplane into the toolbox, export a
Verilog-A model of the backplane to a circuit simulator, and use the model to determine the
performance of your driver and receiver circuitry when they are communicating across the
backplane.

Behavioral Modeling Using Verilog-A

The Verilog-A language is a high-level language that uses modules to describe the structure and
behavior of analog systems and their components. A module is a programming building block that
forms an executable specification of the system.

Verilog-A uses modules to capture high-level analog behavior of components and systems. Modules
describe circuit behavior in terms of

* Input and output nets characterized by predefined Verilog-A disciplines that describe the
attributes of the nets.

* Equations and module parameters that define the relationship between the input and output nets
mathematically.

When you create a Verilog-A model of your circuit, the toolbox writes a Verilog-A module that
specifies circuit's input and output nets and the mathematical equations that describe how the circuit
operates on the input to produce the output.

Supported Verilog-A Models

RF Toolbox software lets you export a Verilog-A model of an rfmodel object. The toolbox provides
one rfmodel object, rfmodel. rational, that you can use to represent any RF component or
network for export to Verilog-A.

The rfmodel. rational object represents components as rational functions in pole-residue form, as
described in the rfmodel. rational reference page. This representation can include complex poles
and residues, which occur in complex-conjugate pairs.

The toolbox implements each rfmodel. rational object as a series of Laplace Transform S-domain
filters in Verilog-A using the numerator-denominator form of the Laplace transform filter:

Model RF Objects Using Verilog-A

where

M is the order of the numerator polynomial.

M is the order of the denominator polynomial.

ny is the coefficient of the kth power of s in the numerator.
dy is the coefficient of the kth power of s in the denominator.

The number of poles in the rational function is related to the number of Laplace transform filters in
the Verilog-A module. However, there is not a one-to-one correspondence between the two. The
difference arises because the toolbox combines each pair of complex-conjugate poles and the
corresponding residues in the rational function to form a Laplace transform numerator and
denominator with real coefficients. the toolbox converts the real poles of the rational function directly
to a Laplace transform filter in numerator-denominator form.

See Also

More About

“Export Verilog-A Model” on page 3-4

3-3

3 Export Verilog-A Models

Export Verilog-A Model

3-4

In this section...

“Represent Circuit Object with Model Object” on page 3-4
“Write Verilog-A Module” on page 3-5

Represent Circuit Object with Model Object

Before you can write a Verilog-A model of an RF circuit object, you need to create an
rfmodel. rational object to represent the component.

There are two ways to create an RF model object:

* You can fit a rational function model to the component data using the rationalfit function.

* You can use the rfmodel. rational constructor to specify the pole-residue representation of the
component directly.

This section discusses using a rational function model. For more information on using the constructor,
see the rfmodel. rational reference page.

When you use the rationalfit function to create an rfmodel. rational object that represents an
RF component, the arguments you specify affect how quickly the resulting Verilog-A model runs in a
circuit simulator.

You can use the rationalfit function with only the two required arguments. The syntax is:
model obj = rationalfit(freq,data)
where

* model obj is a handle to the rational function model object.
* freq is a vector of frequency values that correspond to the data values.
* data is a vector that contains the data to fit.

For faster simulation, create a model object with the smallest number of poles required to accurately
represent the component. To control the number of poles, use the syntax:

model obj = rationalfit(freq,data,tol,weight,delayfactor)

where

» tol — the relative error-fitting tolerance, in decibels. Specify the largest acceptable tolerance for
your application. Using tighter tolerance values may force the rationalfit function to add more
poles to the model to achieve a better fit.

* weight — a vector that specifies the weighting of the fit at each frequency.

* delayfactor — avalue that controls the amount of delay used to fit the data. Delay introduces a
phase shift in the frequency domain that may require a large number of poles to fit using a
rational function model. When you specify the delay factor, the rationalfit function represents
the delay as an exponential phase shift. This phase shift allows the function to fit the data using
fewer poles.

These arguments are described in detail in the rationalfit function reference page.

Export Verilog-A Model

Note You can also specify the number of poles directly using the npoles argument. The model
accuracy is not guaranteed with approach, so you should not specify npoles when accuracy is
critical. For more information on the npoles argument, see the rationalfit reference page.

If you plan to integrate the Verilog-A module into a large design for simulation using detailed models,
such as transistor-level circuit models, the simulation time consumed by a Verilog-A module may have
a trivial impact on the overall simulation time. In this case, there is no reason to take the time to
optimize the rational function model of the component.

For more information on the rationalfit function arguments, see the rationalfit reference
page.

Write Verilog-A Module

You use the writeva method to create a Verilog-A module that describes the RF model object. This
method writes the module to a specified file. Use the syntax:

status = writeva(model obj,'objl',{'inp',"'inn'},{'outp','outn'})

to write a Verilog-A module for the model object model obj to the file obj1l.va. The module has
differential input nets, inp and inn, and differential output nets, outp and outn. The method
returns status, a logical value of true if the operation is successful and false otherwise.

The write reference page describes the method arguments in detail.

An example of exporting a Verilog-A module appears in the RF Toolbox example, “Modeling a High-
Speed Backplane (Rational Function to a Verilog-A Module)” on page 7-68.

See Also

More About

. “Model RF Objects Using Verilog-A’ on page 3-2
. “Export Component Data to File” on page 2-27
. “Export RF Objects” on page 4-18

The RF Design and Analysis Tool

* “The RF Design and Analysis Tool” on page 4-2
* “Create and Import Circuits” on page 4-5

* “Modify Component Data” on page 4-14

* “Analyze Circuits” on page 4-15

» “Export RF Objects” on page 4-18

* “Manage Circuits and Sessions” on page 4-21

* “Model an RF Network” on page 4-24

4 TherrF Design and Analysis Tool

The RF Design and Analysis Tool

4-2

In this section...

“What is the RF Design and Analysis App?” on page 4-2
“Open the RF Design and Analysis App” on page 4-2
“The RF Design and Analysis Window” on page 4-2

“The RF Design and Analysis App Workflow” on page 4-3

What is the RF Design and Analysis App?

The RF Design and Analysis is an app that provides a visual interface for creating and analyzing RF
components and networks. You can use the RF Design and Analysis app as a convenient alternative to
the command-line RF circuit design and analysis objects and methods that come with RF Toolbox
software.

The RF Design and Analysis app provides the ability to

* Create and import circuits.

* Set circuit parameters.

* Analyze circuits.

» Display circuit S-parameters in tabular form and on X< plots, polar plots, and Smith Charts.
* Export circuit data to the MATLAB workspace and to data files.

Open the RF Design and Analysis App
To open the app window, type the following at the MATLAB prompt:
rftool

For a description of the RF Design and Analysis user interface , see “The RF Design and Analysis
Window” on page 4-2. To learn how to create and import circuits, see “Create and Import Circuits”
on page 4-5.

Note The work you do with this app is organized into sessions. Each session is a collection of
independent RF circuits, which can be RF components or RF networks. You can save sessions and
then load them for later use. For more information, see “Working with the RF Design and Analysis
App Sessions” on page 4-22.

The RF Design and Analysis Window
The app window consists of the following three panes:
* RF Component List

Shows the components and networks in the session. The top-level node is the session.

* Component Parameters

The RF Design and Analysis Tool

Displays options and settings pertaining to the node you selected in the RF Component List
pane.

* Analysis
Displays options and settings pertaining to the circuit analysis and results display. After you
analyze the circuit, this pane displays the analysis results and p